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1. INTRODUCTION

In this paper we consider approximation properties of operators V p of
convolution type of which the kernel is the p-th power of a function (3(t)
belonging to a class B. The operators V p are acting on the elementsf(t) of a
class M of functions and are defined by

1 JooUp(f; x) = T f(x - t) (3p(t) dt.
p -00

(1)

The class B consists of all real functions (3(t) defined on the whole real
line R and possessing the following four properties 1.-4.:

1. (3(t)? °on R.

2. (3(t) is continuous at t = 0, (3(0) = 1.

3. For each () > 0, SUPltl~8 (3(t) < 1.

4. (3(t) belongs to the Lebesgue class L1 , i.e., Coo (3(t) dt exists in the
sense of Lebesgue.

We set

I p = Joo (3p(t) dt (p ? I).
-00

(2)

The class M consists of all real functionsf(t), defined, bounded and Lebesgue
measurable on R. Then the right-hand side of (1) exists for all p ? 1. Clearly,
the operators Up are linear and positive on M.

Two main questions will be answered in this paper. Firstly, for the operators
V p with (3(t) ED, f(t) E M and continuous at t = x, it is proved in Theo
rem ] that if p ~ 00,

Vif; x) - f(x) ~ 0.
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Secondly, for the speed with which ViJ; x) - J(x) tends to zero if p~ 00,

asymptotic formulae of Voronovskaya type are derived under conditions
which imply that more is known about the behaviour of {J(t) for t to and
t to, respectively (property 5., resp. 5'.) and that j"(x) exists. It turns out,
that, in some situations, with respect to this behaviour of {J(t), in the asymp
totic formulae only ['(x) comes up, in other ones both ['(x) andj"(x) and in
still others only j"(x). Theorems 2-8 are devoted to this study, Theorem 7
being of special interest.

In some very special cases of operators of the type V p Voronovskaya type
formulae were already known. To the best of our knowledge in all of them
{J(t) is continuous and even. Some examples of such operators are considered
in the last section in the context of our general results. Also a number of more
general operators are treated there.

From the point of view of approximation theory Korovkin [4] was the
first to study a special case of operators of the type V p • However, in his
study the interval of integration is finite and {J(t) is everywhere continuous.
For a bounded J(t), which is continuous at t = x, he proved (3) for pEN.
In the literature some particular operators of type (1) occur much earlier:
e.g. Weierstrass [10] used such operators with {J(t) = e- t2 and pEN to prove
his celebrated approximation theorem, while Landau [5] proved the same
theorem, using {J(t) = I - t 2 (I t I :( 1), {J(t) ~ 0 (I t I > 1), pEN. Of other
authors who incidentally used special operators of the above form we only
mention here Titchmarsh [8] and Bochner [1]. In their 1970 book [3] Butzer
and Nessel consider in chapter 3 a.o. some particular cases of the operators
(1). For them they prove (3) if JE U', J continuous at t = x. In order to
investigate the speed of convergence in (3) (in the sense of the present paper),
in case the right-hand side of (I) is of Fejer's type they assume that {J(t) is
even.

In 1973 Bojanic and Shisha [2] continuing the work on the special type of
operators V p studied by Korovkin, used a special form of property 5. below
in deriving a formula for the speed with which Voel; x) - J(x) tends to zero
if p -+ 00 (p EN). They assumed {J(t) to be even, continuous and monotoni
cally decreasing for t ~ 0 (they consider only a finite interval of integration).
The direction of their work is different from ours. They assumed J(t) to be
continuous and they made use of the modulus of continuity off

2. SOME LEMMAS

In Lemmas 1-5 it is assumed that {J(t) E B and v = 0,1,2,00.. We put for
0> 0 and p ~ 1
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In case v = 0, we shall write
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(5)

LEMMA 1. If 0 > 0, 0 ~ Tj > 0 and if v odd, {J(t) not even on an arbitrary
small interval around t = 0, then

(6)

Proof If 0 = YJ (6) is trivial. If 0 --1= Tj, it may be supposed that 0 > YJ.
Then

(7)

where if p is even

T satisfying the inequality 0 < T < 1, because of property 3. By property 2.
there exists a positive number ~ (~ ~ Tj) such that {J(t) ~ 1 -IT for all t
with I t I ~ f Consequently

IviTj) ~ Ivi~) ~ 2(1 - }T)o f tV dt = :~+~ (1 - }T)o. (9)

From (7), (8) and (9) then follows that

o~ Irio) _ 1 ~ (v + 1)( 1 -JT )0 (olt)v+!.
Ivo(YJ) 1 - 2T

This proves Lemma 1 if p is even. If p is odd a similar reasoning holds.

LEMMA 2. If 0 > 0 then

I, Rp(o) 0
1m 1(1.') = .

P--) "X! P 0
(10)

Proof According to property 3. there exists a number T with 0 < T < 1
such that 0 ~ {J(t) ~ 1 - T for all t with It! ):. o. Then, if p ;)0 2,

Rvp(o) ~ (1 - T)0-1 [ {J(t) dt :s;; (1 - T)o-ll1 {JII , (11)
Jltl~6

where II f31! is the L1-norm of {J(t), which exists because of property 4. On
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account of property 2. there exists a positive number YJ, such that fl(t) ~
I - iT for all t with I t I ~ YJ and hence

Because of (11) and (12) it follows that

and thus (10).

LEMMA 3. If S > 0, then

lim 10 (S) = I and lim Ro(S) = O.
0-' xc 1

0
0-> xc 1

0

Proof From

10(S) + RiS) = 10 ,

o c< Ro(S) c< RiS)
"" 10 "" Io(S)

and Lemma 2, (13) follows.

LEMMA 4.

(12)

(13)

(14)

Proof Because of Property 2. there exists to every E > 0 as> 0 such,
that for all t with 1 t I ~ S the relation 0 ~ 1 - fl(t) < E/2 holds. Hence

10 +1 ~ 10 = fro (I - fl(t» flo(t) dt + 10+1
-7)

= r (I - fl(t» flo(t) dt + Ro(S) - RO+1(S) + 10+1
-6

By Lemma 3 this means that for all sufficiently large p

Since E > 0 is arbitrary, (14) follows.
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LEMMA 5. If I) > °and TJ > 0, then

lim Ayp(l)) = 1.
p-->ro Ayp(TJ)

Proof It can be given similarly to that of Lemma 1.
A lemma of a different character, which is useful in the next sections is the

following one.

LEMMA 6. If I) > 0, ,\ )': 0, a > 0, ex > 0, then

a
lim plHll/x J t'e-potX dt = cx-1a-(A+ll/e<r((,\ + 1)/cx). (15)
p.....H~) 0

Proof (15) readily follows by substituting pate< = u in the integral.

3. TIlE ApPROXIMATION TIlEOREM

In this section we prove the following theorem:

TIlEOREM 1. If (J(t) E B,f(t) E M and I(t) is continuous at a point t = x,
then

lim Up(f; x) = j(x).p-->ro

Proof Since I(t) is continuous at t = x, there exists to every e > °a
I) > °such that for all t with I t I ~ I)

!/(x - t) - I(x)! < e/2.

Because of property 3. there exists a constant M > 0, such that for all t
with ! t I )': I)

I/(x - t) - I(x) I < M(l - (J(t)).

Consequently, for all t

I/(x - t) - I(x) I < (e/2) + M(l - (J(t)).

Applying the operator Up it follows from its linearity and positivity that

I Up(f; x) - j(x)1 < (e/2) + M( I - lot)·
p
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By Lemma 4 this means that for all sufficiently large p

I Uif; x) - f(x) I < E

which proves the theorem.

4. TIlE SPEED OF ApPROXIMATION

31

In determining an asymptotic expression for the speed with which the
image Up(f; x) tends to f(x) if p~ 00, at a point t = x of continuity of f(t),
we assume thatf"(x) exists.

Because of the existence of f"(x) we can write

f(x - t) - f(x) = -tf'(x) + it~"(x) + t 2y",(t), (16)

where y",(t) is bounded on R and with the definition yiO) = 0, yit) is
continuous at t = O. Consequently, to each 'YJ > 0 there exists a 8 > 0,
such that for all t with I t I ~ 8 the inequality

[y",(t)[ < 'YJ

holds. Then, with the notation (4),

(17)

Up(f; x) - f(x) = ; f' {f(x - t) - f(x)} (Jp(t) dt
p -00

= L[f~8 {-tf'(x) + tt2f"(x) + t2Yx(t)} fJp(t) dt

+ f {f(x - t) - f(x)} (JP(t) dt]
J1tl >8

= -f'(x) /1p(8) + tf"(x) /2p(8) + Jp(8) + Kp(8) , (18)
~ ~ ~ ~

where

and

Ji8) = r t 2yit) (Jp(t) dt
-8

Kp(8) = f {f(x - t) - f(x)} (Jp(t) dt.
J1tl>8

(19)

(20)

In what follows the asymptotic behaviour for p ~ 00 of /d8)j/p , /2p(8)j/p ,
Jp(8)j/p and Kp(8)j/p respectively, will be determined. The results, giving the
asymptotic behaviour of (18) for p -- 00, will be given in Theorems 2-8.
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In addition to properties 1.-4. it is now assumed that f3(t) possesses the
following property 5. which makes the behaviour of f3(t) for t --+°more
precise and which allows this behaviour to be different if t tends from the
positive or from the negative side to t = 0:

5. f3(t) = I - et" + cjJ(t) it t ~ 0, with ex > 0, e > 0, cjJ(t) = o(t");

f3(t) = I - e' I t I'" + if;(t) it t to, with ex' > 0, e > 0, if;(t) = 0(1 t I"').

(21)

Obviously, it will be necessary to investigate the three cases ex > ex', ex < ex'
and ex = rx' separately, while in the latter case distinction has to be made
between e c/= e' and e = e'. In the following parts of Section 4 the cases
ex > ex', rx < ex' and ex = ex' with e c/= e' will be treated. Sub-section 4.2 is
devoted to a common treatment of these three cases as far as possible; in
Sub-section 4.3 theorems will be derived from the results of Sub-section 4.2
for each of the cases rx > rx', rx < rx' and a = a' with e c/= e', separately. The
case rx = a', e = e' is investigated in Sub-section 4.4.

4.2. ASYMPTOTIC BEHAVIOUR OF (18)

Although in studying the asymptotic behaviour of Ivp('6) (8 > 0) if p --+ 00,

only the cases v = 0, I and 2 are of direct interest, it will be assumed, that v

is a non-negative integer. Then

Ivp(8) = fa tvf3p(t) dt = fa tvf3p(t) dt + (-l)vr tvf3p(-t) dt, (p;): I). (22)
-a 0 0

Because of property 2. there exists a constant 80 with °< 80 ~ 8 such that
on the interval °~ t ~ 80 both f3(t) > °and f3( -t) > O. Then, by (22) with
8 replaced by 00 ,

aD a.
Ivp(8 0) = 50 tVePlOg!3(t) dt + (-I)V 50 tvePlog!3(-t) dt

= Avp(llo) + (-I)V Bvp(80).

Again, on account of property 5. there exists to each € with

°< E < min(e, e')

(23)

a 0, with 0 < 0, ~ 00 such that for all t satisfying 0 ~ t ~ 0, both relations

-(e + €) t" ~ log f3(t) ~ -(e - €) t",

-(e' + E) t a ~ log f3( -t) ~ -(e' - €) t a
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hold. Consequently, Avio.) satisfies the inequalities

Applying Lemma 6 it follows with the notation

that

33

(24)

(X-I(C + €)-a T(a) :(; lim inf paAvo(o.) :(; lim sup paAvo(o.) :(; (X-I(C- €)-a T(a).
p-H1J p-)OO

(25)

By writing

it is, on account of property 3., clear, that limo >00 pa{Avo(o.) - Avo(o.)} = 0
and this means that both the lim inf and the lim sup in (25) are independent
of 0.(0 < o. :(; 00), If then, € runs through a monotonically decreasing null
sequence and the sequence of corresponding O. is chosen to be also a mono
tonically decreasing null-sequence, it follows that

(26)

Similarly,

where

«(X')-I(V + 1) = a'.

(27)

(28)

Combining (23), (26), (27) and applying Lemma 5 to (26) and (27) the
following result is arrived at

where v = 0, 1, 2,... , and a, a' are given by (24), (28) respectively.
Considering Jo(o) and Ko(o) defined in (19) and (20), it follows from (17)

that
(30)

and sincefE Mthere exists a constant P > 0, such that for all t on R 1/(t)1 :(;
1sP and hence, by (4) and (11)

(0 < T < 1). (31)
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4.3. ASYMPTOTIC BEHAVIOUR OF (18) IF NOT ex = ex', C = C'

THEOREM 2. If {J(t) E Band {J(t) possesses property 5. with ex > ex', if
f(t) E M and iff"(x) exists at a point t = x, then

pl/a{Vp(f; x) - f(x)} = -el/ar(2jex){r(1jex)}-~'(x) + ~(1) (p - 00). (32)

Proof As ex > ex', it follows from (24) and (28) that a < a'. This means
that for v = 0, 1,... , (29) becomes

(33)(p - 00).Ivp( 0) = ex-learea) p-a + ~(p-a)

Hence, using (5), (24) and (13),

11/(0) = e l /ar(2jex){r(1/ex)}-1 p-l/a + f!(p-l/a) (p _ 00), (34)
p

12.(0) = c-2/ar(3/ex){r(1/ex)}-1 p-2/a + ~(p-2/a) (p _ 00), (35)
I p

and, on account of (30), (35), (31), (33) with v = 0,

J70) = (J)(p-2/a), Kfo) = (J)(pl/a)(l - T)p-l) (p _ 00). (36)
p p

Substituting (34), (35) and (36) in (18), (32) follows.

In case ex' > ex the following theorem holds:

THEOREM 3. If {J(t) E Band {J(t) possesses property 5. with ex' > ex, if
f(t) E M and iff"(x) exists at a point t = x, then

pl/a{V.(f; x) - f(x)} = c-l /aT(2jex'){r(ljex')}-1j'(x) + ~(1) (p - 00). (37)

Proof As ex' > ex, it follows from (24) and (28) that a' < a and hence (29)
becomes

(p - 00).

Then the proof of (37) can be continued in an analogous way as that of (32)
from (33) onwards.

In case ex = ex', C # c' we have

THEOREM 4. If {J(t) E Band {J(t) possesses property 5. with ex = ex',
C # c', iff(t) E M and ifj"(x) exists at a point t = x, then

plja{Vi/; x) - f(x)}

= T(2jex){r(l/ex)}-1(cc')-1/a{cl /a - (c')l/a}j'(x) + 0(1) (p - 00). (38)
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Proof From (24) and (28) it follows that a = a'. Therefore (29) becomes
for v = 0, 1,... ,

(p --+ iXJ) (39)

and the proof of (38) can be continued in an analogous way as that of (32)
from (33) onwards.

4.4. ASYMPTOTIC BEHAVIOUR OF (18) IF IX = IX', e = e'

THEOREM 5. If {j(t) E Band {j(t) possesses property 5. with IX = IX', C = c',
iff(t) E M and iff"(x) exists at a point t = x, then

pl(cx{Vif; x) - f(x)} = o(l) (p --+ iXJ). (40)

Proof From (24) and (28) it follows that a = a' and because e = e', (29)
gives for v odd

(p --+ 00) (41 )

and the proof of (40) can be continued in an analogous way as that of (32)
from (33) onwards.

It should be noticed that a special case of that with which Theorem 5
deals is that case where in property 5. not only IX = IX', e = c', but also
eP(t) = f(-t) on an interval 0 ~ t < g. Then {j(t) is an even function on
I t I ~ e, where e= min(~, 8). By (22) I 1P«()) = 0, while (35), (30), (36) still
hold. Using these results, (18) gives

(p --+ 00),

where 17 is used in (17) and

This leads to

THEOREM 6. If f1(t) E Band f1(t) is even in a neighborhood of t = 0, if
f(t) EM and iff"(x) exists at a point t = x, then

(p --+ iXJ).

(42)

Remark. Tn many examples of known operators of convolution type f1(t)
is even on the whole of the real axis. Then Theorem 6 holds a fortiori. Viz.
Section 6.
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From the above it is clear that if a more precise result is desired then
Theorem 5 gives, it will be necessary that in Property 5 more is known about
ep(t) and if1(t) in a neighborhood of t = O. Theorem 6 is already an example
of this.

In what follows an investigation of /vp(8), as defined in (22), will be given
under the condition that f3(t) possesses Property 5 with ct = ct', e = e',
ep(t) =1= if1(-t) on an interval 0 < t < 8 (8 > 0). Of course this investigation
will again lead to Theorem 5, but if more is known about the way in which
ep(t) and if1( -t) tend to zero if t ~ 0, it leads to results which are more precise
than Theorem 5. An important example is studied in Section 5.

Let in Property 5

X(t) = if1(-t) - ep(t) (43)

be either positive or negative for all sufficiently small values of t > O. Thus,
let Ll (0 < Ll ~ 8) be chosen so small that either

or

and, moreover,

X(t) > 0

X(t) < 0

(for all t with 0 < t ~ Ll)

(for all t with 0 < t ~ Ll),

I - etC< + c/>(t) > i and I - etC< + if1(-t) > l (0 ~ t ~ Ll). (44)

Let then
7' = sgn X(t) (0 < t ~ Ll). (45)

On this interval 7' is constant.
In case v even, it follows from (39) with e = c', that

a = ct-1(v + 1), (46)

from which, with v = 2 and v = 0, (5) and Lemma 3,

Next the case v is odd is studied. Then, IviLl) is written as

LI
Ivp(Ll) = f. tV {eP!OgU-ctC<+<b(t)) - eP!OgU-ctC<+W(-t))} dt

o

LI
= f tVeP!OgU-ctC<+<!>(t)) {I - eP!Og(l+XW!Cl-ctC<+<!>Ct»)} dt. (48)

o
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Writing for 0 ~ t ~ Ll

log(l - et" + rp(t» = -et" + get),

(
X(t»)

log 1 + I _ et" + rp(t) = X(t) + 1](t),

then

37

(49)

(50)

W) = o(t"), 1](t) = (!)(t"X(t) (t ~ 0). (51)

Since {J(t) is bounded on R, rp(t) and if;(-t) are bounded on the interval
o~ t ~ Ll and by (43) X(t) too. Then it follows from (51) that there exists
on this interval a bounded, monotonically increasing function W) with
'(0) = 0, and a positive constant r such that for all t of this interval

I W)I ~ t"W),

11](t)1 ~ rt" I X(t)[.

(52)

(53)

Assertion. It is possible to construct for all sufficiently large values of
p, say p ~ Q, two positive functions E(p) and 8(p), both monotonically
decreasing to zero if p -+ 00, with E(Q) < minCe, I) and 8(Q) < Ll such that
for all p ~ Q and all t with 0 ~ t ~ 8(p) both

-(e + E(p» t" ~ -et" + W) ~ -(e - E(p» t" (54)

and

-p(l + 'TE(p»X(t) ~ 1 - eP(x(t)+n(t» ~ -p(l - u(p»X(t) (55)

hold, with 'T given in (45).
Obviously, (54) is satisfied if

'(8(p» ~ E(p)

Investigating (55) we write for 0 ~ t ~ Ll

(p ~ Q). (56)

I - eP(x(t)+n(t)) = -p(X(t) + 1](t» + pX(t)y(t, p) (57)

which transforms (55) into

I -P1](t) + pX(t)y(t, p)[ ~ pEep) 'TX(t)

Because of (53), (58) will certainly be satisfied if

(0 ~ t ~ 8(p». (58)

r8"(p) + IYet, p)1 ~ E(P) (0 ~ t ~ 8(p». (59)
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From the definition (57) of y(t, p) it follows that

Iy(t, p)1 :(; p I X(t)l(1 + rta:)2 f pk I X(t)lk (1 ~ rta:)k
k~O (k+2).

:(; tAp I X(t)1 eApIXWI, (60)

where

On account of Property 5. with ex; = ex;' and (43) we can write

X(t) = ta:w(t) (0 :(; t :(; .1) (61)

with w(O) = 0, w(t) -+ 0 if t ~ 0, which means, that because of the bounded
ness of X(t) on 0 :(; t ~ .1, there exists a function Q(t), Q(O) = 0 and mono
tonically increasing, such that

I w(t)1 :(; Q(t) (0 ~ t ~ .1). (62)

Then it follows from (60), (61) and (62), that

Iy(t, p)1 ~ tB(p) eB(p)

where

(p ~ Q) (63)

B(p) = Apoa:(p)Q(o(p)).

From (59), (60) and (63) it appears that (55) is certainly satisfied if

(64)

roa:(p) + tB(p) eB(p) ~ €(p) (p ~ Q). (65)

In considering (56) and (65) o(p) can be chosen in such a way that the rela
tions

and
poa:(p)Q(o(p)) -+ 0

(p -+ (0)

(p -+ (0)

(66)

(67)

hold simultaneously. In fact, since Q(u) is monotonically increasing on the
interval 0 :(; t ~ .1, and Q(O) = 0, the equation

pua: = (Q(U))I/2 (68)

possesses for all sufficiently large p, say p ~ PI ~ I, precisely one positive
root u = u(P) which is smaller than .1. This root u(p) is monotonically
decreasing to zero if p -+ 00. We define

o(p) = u(p) (69)
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and with this definition we put for all P ~ P2 ~ PI

€(p) = maxg(8(p», 8~(p) + tB(p) eBlp)},

39

(70)

B(p) being defined in (64), where P2 is chosen so large that for p ~ P2 both
quantities between the curled brackets are smaller than min(c, I) and
moreover, B(p) is monotonically decreasing (to zero) for p ~ P2 . Then we
define Q = P2' With these definitions of 8(p), €(p) and Q the assertion is
proved and that means that for v odd and p ~ Q (54) and (55) are satisfied.
Consequently, by (49), (50), (54), (55) and (48), IvoCd) fulfils the following
fundamental inequalities:

f
8lP)

-p(l + T€(p» tVe-plc+dp))t~X(t) dt ~ Ivp(8(p»
o

f
8lP)

~ -p(l - T€(p» tve-plc-·(p»)t~X(t) dt, (v odd, p ~ Q).
o

(71)

Without knowing more about the behaviour of X(t), i.e. of w(t), if t to,
it is impossible to derive from (71) much about the asymptotic behaviour of
I vp(8(p» if p -+ 00. However, it is easy to show that

(p -+ 00) (72)

with a given by (24). In fact, multiplying all three members of (71) with pa
and using (61), (62), it follows that

f
8(P)

pa I I vp(8(p» I ~ pa+l(l + €(p»{8(p)}v+c' Q(8(p» 0 e-p(c-dp»t~ dt.

Applying Lemma 6, this leads to

where B(p) is given in (64) and C is a properly chosen positive constant.
Because of (64), (67) and the fact that 8(p) tends to zero if p -+ 00, (72) is true.

As a first corollary we show that from this result Theorem 5 can be proved
again.

In fact, if v is odd and p ~ Q, I vi8) as given in (22) is written as

(73)

Because of Property 5. with 0: = 0:/, C = c', it is possible to choose 81 > 0
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and so small, that for all t with I t I :::;;; 81 , f:3(t) > e-!ct"'. Then 8(p):::;;; 81 for
sufficiently large p, say p ~ P3 ~ Q and

pa If t"f:3P(t) dt I:::;;; 2pa f8
1

t"e-!pct'" dt
8(p)<ltl<81 8(p)

2-1cp51
= 2cc1(2/c)a f ua- 1e-u duo

2-1cp8"'(p)

By (66) the latter integral tends to zero as p ---->- 00.

Hence it follows from (73) and (72) that for odd values of v

Then, (41) holds and this again proves Theorem 5.
A second corollary to (71) will be treated in the next section.

5. EXAMPLE TO PROPERTY 5. OF f:3(t)

In this section 4>(t) and !fi(t) in Property 5. of f:3(t) are chosen in a special
way. Because of (43) this means that in the fundamental relation (71) of X(t)
more is known and that will lead to a formula for the asymptotic behaviour
of I voC8(p)).

It is assumed that Property 5. takes the following form, indicated by 5':

5' f:3(t) = 1 - et'" + dt" + aCt) if t {.O,

with IJ- > ex > 0, C > 0, d =1= 0, aCt) = o(t,,),

f:3(t) = 1 - cit I'" + d' I t I'" + T(t) if t to,
with IJ-' > ex > 0, d' =1= 0, T(t) = 0([ t I"').

In the investigation it will be supposed that IJ- < IJ-' because its conclusions
appear to hold with only minor changes if IJ-' < IJ- or IJ- = IJ-'.

Then in (43),

X(t) = -dt" + d't'" - aCt) + T(-t) = t"'w(t), (74)

where, in accordance with (61),

wet) = -dt"-'" + aCt),

with

(75)

(t {.O). (76)
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In (62) we may choose

41

Q(t) = Dt"-" (0 ::::;:; t ::::;:; Ll)

where Ll > 0 is so small that on the interval 0 < t ::::;:; A X(t) =1= 0 and X(t)
has a fixed sign; D > 0 is properly chosen. On 0 < t ::;;; Ll is

T = sgn(-d)

because of (45). (66) and (67) take the form

(77)

and (p -+ (0)

respectively, from which it follows that in the special case, considered in this
section, we may take

o(p) = p-v (~ < Y < ~) .

Because of the results of Sub-section 4.4, with this choice of o(p) it is
possible to construct for all sufficiently large p (p ~ Q) a positive function
E(p) with E(Q) < min(c, 1) and monotonically decreasing to zero if p -+ 00,
such that for all p ~ Q the fundamental inequalities (71) hold, i.e.

-p(1 + TE(p)) r-1'

tVe-p(c+dp))t"X(t) dt ::;;; Ivp(p-v)
o

::;;; -p(1 - TE(p)) (-V tVe-p(C-do))t"X(t) dt,

from which, with X(t) written in the form

X(t) = t"(-d + b(t)), and b(t) = t"a(t) = 0(1) if t ~ 0, (78)

(because of (74), (75), (76)), it follows that

-p(1 + TE(p)) r-v
t,,+ve-p(c+do))t"(-d + b(t)) dt ::;;; Ivp(p-v)

o

::;;; -p(l - TE(p)) r-1'

t,,+ve-p(C-dollt"(-d + b(t)) dt.
o

Applying Lemma 6,

(79)
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where i = 0, I;) = (_l)i, g = (p. + v + l)jrx and

Wi(p) = Jet;) ug-Ie-u duo
(c+j.(p»pl-~y

(81)

Further, with respect to b(t), defined in (78) and combined with (76) it is
clear that to each €b with °< €b :« ! there exists a Qb ;? Q such that for all
p ;? Qb

(82)

Combining (79), (80) and (82) the following inequalities are obtained

(I + T€(p))(1 + T€b) d {T( ) _ w: ( )}":::: g-II ( -y)
rx(c + €(p))g gop '" P VP P

,,:::: (I - T€(p))(l - TEb) d {J',( ) _ W ( )}
'" rx(c _ €(p))g g I P •

Because of the fact that 1 - rxy > 0, it follows from (81) that if p --+ 00

and, using an argument as in Sub-section 4.2 (83) results in

(83)

From this result it follows by reasoning as in the first corollary in Sub
section 4.4 that

(v odd, p --+ 00).

Taking v = 1 and using (46) with v = 0, combined with (5) and Lemma 3,
this results in

Consequently, by (18), (84) and (47) together with Lemma 1, the following
formula holds for p --+ 00:

Up(f; x) - f(x) = -d2-lc-("+l)/~r((p. + 2)jrx){r(ljrx)}-1 j'(x) p-("II-~)/~

+ 2-lc-2/~r(3jrx){r(1jrx)}-1 j"(x) p-2/~

+ o(p-("+l-~)j~) + O(p-2/~).

This result leads to
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THEOREM 7. If (:J(t) E Band (:J(t) possesses Property 5'. with IL < IL' and
d =1= 0, iff(t) E M andr(x) exists at a point t = x, then

where

and

p<J/rYC{U.(f; x) - f(x)} = p(x) + 0(1)

a = min(1L + 1 - ex, 2)

(p ~ 00),

(i) if 0 < IL - ex < 1, then a = IL + 1 - ex and

(ii) if IL - ex = 1, then a = 2 and

p(x) = 2-1c-2 /ar(3jex){r(ljex)}-1{-3d(exc)-lJ'(x) +rex)}

(iii) if IL - ex > 1, then a = 2 and

ADDENDUM. If on the contrary IL' < IL and d' =1= 0, then in the assertions
of theorem 7, IL is to be replaced by IL' and in (i), (ii), (iii) d by -d'.

If IL = IL', and d =1= d', in (i), (ii) d is to be replaced by d - d'.

6. ApPLICATIONS

In this section we consider a special case of Theorem 7, which was proved
in a study [7], preceding the present paper.

THEOREM 8. If (:J(t) E Band (:J"'(O) exists, while (:J"(O) =1= 0, if fE M and
rex) exists at a point t = x, then

p{ V.(I; x) - f(x)} = 2~:0) !~::i~j f'(x) +r(x)l + 0(1) (p ~ 00). (85)

Proof As (:J"'(O) exists, (:J(t) can be written as

(3(t) = (3(0) + t(3'(O) + tt 2(3"(0) + tt 3(3"'(0) + t 3K(t),

in which, because of the fact that (3 E E, (3(0) = 1, (3'(0) = 0, (3"(0) < 0,
Hence, (3(t) possesses property 5'. if (3"'(0) =1= 0, with ex = 2, IL = IL' =~ 3,
c = -t(3"(O), d = tf3",(0), d' = -t(3"'(O), t 3K(t) = 0(t 3) if t ~ O. Thus, if
(3"'(0) =1= 0, Theorem 7, together with its addendum results in a = 2 and (ii)
then gives (85).
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Ofthe well-known operators several are of the type considered in Theorem
8. As examples we mention here

1. fJ(t) = r t2 , I p = (TTjp)l/2(p ? I) (Weierstrass [10]).

(85) takes the form

P !(pjTT)1/2 L: f(x - t) r pt2 dt - f(x)l = !j"(x) + .0(1) (p - (0).

2. fJ(t) = I - t 2([ t I ~ I), fJ(t) == 0 (I t I > 1) (Landau [5]).

Then, if p ? I,

I p = B(1j2, p + 1) = (TTjp)1/2(1 + .0(1))

Theorem 8 gives

(p- (0).

P !(pjTT)1/2 f/(X - t)(1 - t 2)p dt - f(x)l = !j"(x) + .0(1) (p - (0).

3. fJ(t) = COS2(TTj2)t(1 t I ~ I), fJ(t) = 0 (/ t I> I).

Then, if p ? I, I p = (8j(TTp))-1/2.
The corresponding operators are the slightly modified de la ValIee-Poussin
operators [9]. Theorem 8 gives

It is to be noticed that in all three above examples fJ(t) is an even function.
An example where this is not so is the following one:

4. fJ(t) = e-t2+t" (I t I ~ i), fJ(t) E B.

Then, if p ? I, I p = (TTjp)l/2(1 + .0(1)). Theorem 8 is applicable with a = 2,
IL = IL' = 3, f3"(0) = -2, fJ"'(O) = 6 and it gives

p !(pjTT)1/2 L: f(x - t) fJp(t) dt - f(x)l = -if'(x) + f"(x) + 0(1) (p - (0).

A first example where Theorem 8 is not applicable is a generalisation of
the above Example 2:

5. fJ(t) = I - I t I"(a > 0, 1t I ~ I), fJ(t) == 0 (I t I > 1).

Then, if p ? 1,

(p - 00),
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B(x, y) denoting Euler's beta function. According to Theorem 7 with c = I,
we have

p2/~ ~pl/~{2r«l/ex) + 1)}-lf
1
f(x - t)(1 - ! t I~)D dt - f(x)l

= 2-1r(3/ex){r(l/ex)}-1 rex) + 0(1) (p ---+ (0).

The case ex = 2k (k E N, k ? 2) is due to Mamedov [6].
A second one is the following one:

6. f3(t) = e-t4+t
5 (I t I ~ t), f3(t) E B.

Then, if p ? I,

(p ---+ (0).

Application of Theorem 7, together with its addendum, gives

pl/2! 2pl/4{r(!)}-1 roro f(x - t) f3D(t) dt - f(x)l

= 2-1rW{F(m-1{- Itf'(x) + rex)} + 0(1) (p ---+ (0).
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