Approximation Formulae of Voronovskaya-Type for Certain Convolution Operators

P. C. SIKKEMA

Department of Mathematics, University of Technology, Delft, Netherlands Communicated by P. L. Butzer Received November 22, 1977

1. INTRODUCTION

In this paper we consider approximation properties of operators U_{ρ} of convolution type of which the kernel is the ρ -th power of a function $\beta(t)$ belonging to a class *B*. The operators U_{ρ} are acting on the elements f(t) of a class *M* of functions and are defined by

$$U_{\rho}(f;x) = \frac{1}{I_{\rho}} \int_{-\infty}^{\infty} f(x-t) \beta^{\rho}(t) dt.$$
(1)

The class *B* consists of all real functions $\beta(t)$ defined on the whole real line **R** and possessing the following four properties 1.-4.:

1. $\beta(t) \ge 0$ on **R**.

2. $\beta(t)$ is continuous at t = 0, $\beta(0) = 1$.

3. For each $\delta > 0$, $\sup_{|t| \ge \delta} \beta(t) < 1$.

4. $\beta(t)$ belongs to the Lebesgue class L_1 , i.e., $\int_{-\infty}^{\infty} \beta(t) dt$ exists in the sense of Lebesgue.

We set

$$I_{\rho} = \int_{-\infty}^{\infty} \beta^{\rho}(t) \, dt \, (\rho \ge 1). \tag{2}$$

The class *M* consists of all real functions f(t), defined, bounded and Lebesguemeasurable on **R**. Then the right-hand side of (1) exists for all $\rho \ge 1$. Clearly, the operators U_{ρ} are linear and positive on *M*.

Two main questions will be answered in this paper. Firstly, for the operators U_{ρ} with $\beta(t) \in B$, $f(t) \in M$ and continuous at t = x, it is proved in Theorem 1 that if $\rho \to \infty$,

$$U_{\rho}(f; x) - f(x) \to 0. \tag{3}$$

Copyright © 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. Secondly, for the speed with which $U_{\rho}(f; x) - f(x)$ tends to zero if $\rho \to \infty$, asymptotic formulae of Voronovskaya type are derived under conditions which imply that more is known about the behaviour of $\beta(t)$ for $t \downarrow 0$ and $t \uparrow 0$, respectively (property 5., resp. 5'.) and that f''(x) exists. It turns out, that, in some situations, with respect to this behaviour of $\beta(t)$, in the asymptotic formulae only f'(x) comes up, in other ones both f'(x) and f''(x) and in still others only f''(x). Theorems 2–8 are devoted to this study, Theorem 7 being of special interest.

In some very special cases of operators of the type U_{ρ} Voronovskaya type formulae were already known. To the best of our knowledge in all of them $\beta(t)$ is continuous and even. Some examples of such operators are considered in the last section in the context of our general results. Also a number of more general operators are treated there.

From the point of view of approximation theory Korovkin [4] was the first to study a special case of operators of the type U_{ρ} . However, in his study the interval of integration is finite and $\beta(t)$ is everywhere continuous. For a bounded f(t), which is continuous at t = x, he proved (3) for $\rho \in \mathbb{N}$. In the literature some particular operators of type (1) occur much earlier: e.g. Weierstrass [10] used such operators with $\beta(t) = e^{-t^2}$ and $\rho \in \mathbb{N}$ to prove his celebrated approximation theorem, while Landau [5] proved the same theorem, using $\beta(t) = 1 - t^2$ ($|t| \leq 1$), $\beta(t) \equiv 0$ (|t| > 1), $\rho \in \mathbb{N}$. Of other authors who incidentally used special operators of the above form we only mention here Titchmarsh [8] and Bochner [1]. In their 1970 book [3] Butzer and Nessel consider in chapter 3 a.o. some particular cases of the operators (1). For them they prove (3) if $f \in L^{\infty}$, f continuous at t = x. In order to investigate the speed of convergence in (3) (in the sense of the present paper), in case the right-hand side of (1) is of Fejér's type they assume that $\beta(t)$ is even.

In 1973 Bojanic and Shisha [2] continuing the work on the special type of operators U_{ρ} studied by Korovkin, used a special form of property 5. below in deriving a formula for the speed with which $U_{\rho}(f; x) - f(x)$ tends to zero if $\rho \to \infty$ ($\rho \in \mathbb{N}$). They assumed $\beta(t)$ to be even, continuous and monotonically decreasing for $t \ge 0$ (they consider only a finite interval of integration). The direction of their work is different from ours. They assumed f(t) to be continuous and they made use of the modulus of continuity of f.

2. Some Lemmas

In Lemmas 1–5 it is assumed that $\beta(t) \in B$ and $\nu = 0, 1, 2, ...$. We put for $\delta > 0$ and $\rho \ge 1$

$$I_{\nu\rho}(\delta) = \int_{-\delta}^{\delta} t^{\nu} \beta^{\rho}(t) \, dt, \, A_{\nu\rho}(\delta) = \int_{0}^{\delta} t^{\nu} \beta^{\rho}(t) \, dt, \, R_{\rho}(\delta) = \int_{|t| \ge \delta} \beta^{\rho}(t) \, dt.$$
(4)

In case $\nu = 0$, we shall write

$$I_{\rho}(\delta) = I_{0\rho}(\delta). \tag{5}$$

LEMMA 1. If $\delta > 0$, $\delta \ge \eta > 0$ and if ν odd, $\beta(t)$ not even on an arbitrary small interval around t = 0, then

$$\lim_{\rho\to\infty}\frac{I_{\nu\rho}(\delta)}{I_{\nu\rho}(\eta)}=1.$$
 (6)

Proof. If $\delta = \eta$ (6) is trivial. If $\delta \neq \eta$, it may be supposed that $\delta > \eta$. Then

$$I_{\nu\rho}(\delta) = I_{\nu\rho}(\eta) + \int_{\eta \leq |t| \leq \delta} t^{\nu} \beta^{\rho}(t) \, dt, \tag{7}$$

where if p is even

$$0 \leqslant \int_{\eta \leqslant |t| \leqslant \delta} t^{\nu} \beta^{\rho}(t) \, dt \leqslant 2\delta^{\nu+1} \{ \sup_{\eta \leqslant |t| \leqslant \delta} \beta(t) \}^{\rho} = 2\delta^{\nu+1} (1-\tau)^{\rho}, \qquad (8)$$

 τ satisfying the inequality $0 < \tau < 1$, because of property 3. By property 2. there exists a positive number ξ ($\xi \leq \eta$) such that $\beta(t) \ge 1 - \frac{1}{2}\tau$ for all t with $|t| \le \xi$. Consequently

$$I_{\nu\rho}(\eta) \ge I_{\nu\rho}(\xi) \ge 2(1-\frac{1}{2}\tau)^{\rho} \int_{0}^{\xi} t^{\nu} dt = \frac{2\xi^{\nu+1}}{\nu+1} (1-\frac{1}{2}\tau)^{\rho}.$$
(9)

From (7), (8) and (9) then follows that

$$0 \leqslant \frac{I_{\nu\rho}(\delta)}{I_{\nu\rho}(\eta)} - 1 \leqslant (\nu+1) \Big(\frac{1-\tau}{1-\frac{1}{2}\tau}\Big)^{\rho} (\delta/\xi)^{\nu+1}.$$

This proves Lemma 1 if p is even. If p is odd a similar reasoning holds.

LEMMA 2. If $\delta > 0$ then

$$\lim_{\rho \to \infty} \frac{R_{\rho}(\delta)}{I_{\rho}(\delta)} = 0.$$
 (10)

Proof. According to property 3. there exists a number τ with $0 < \tau < 1$ such that $0 \leq \beta(t) \leq 1 - \tau$ for all t with $|t| \geq \delta$. Then, if $\rho \geq 2$,

$$R_{\nu\rho}(\delta) \leqslant (1-\tau)^{\rho-1} \int_{|t| \ge \delta} \beta(t) \, dt \leqslant (1-\tau)^{\rho-1} \, \|\, \beta\,\|\,, \tag{11}$$

where $\|\beta\|$ is the L₁-norm of $\beta(t)$, which exists because of property 4. On

account of property 2. there exists a positive number η , such that $\beta(t) \ge 1 - \frac{1}{2}\tau$ for all t with $|t| \le \eta$ and hence

$$I_{\rho} \geqslant I_{\rho}(\eta) \geqslant 2\eta(1-\frac{1}{2}\tau)^{\rho}.$$
 (12)

Because of (11) and (12) it follows that

$$0 \leqslant \frac{R_{\rho}(\delta)}{I_{\rho}} \leqslant \frac{\|\beta\|}{2\eta(1-\tau)} \left(\frac{1-\tau}{1-\frac{1}{2}\tau}\right)^{\rho}$$

and thus (10).

LEMMA 3. If $\delta > 0$, then

$$\lim_{\rho\to\infty}\frac{I_{\rho}(\delta)}{I_{\rho}}=1 \text{ and } \lim_{\rho\to\infty}\frac{R_{\rho}(\delta)}{I_{\rho}}=0.$$
(13)

Proof. From

$$egin{aligned} &I_{
ho}(\delta)+R_{
ho}(\delta)=I_{
ho}\,,\ &0\leqslantrac{R_{
ho}(\delta)}{I_{
ho}}\leqslantrac{R_{
ho}(\delta)}{I_{
ho}(\delta)} \end{aligned}$$

and Lemma 2, (13) follows.

LEMMA 4.

$$\lim_{\rho \to \infty} \frac{I_{\rho+1}}{I_{\rho}} = 1.$$
 (14)

Proof. Because of Property 2. there exists to every $\epsilon > 0$ a $\delta > 0$ such, that for all t with $|t| \leq \delta$ the relation $0 \leq 1 - \beta(t) < \epsilon/2$ holds. Hence

$$egin{aligned} &I_{
ho+1}\leqslant I_{
ho}=\int_{-\infty}^{\infty}\left(1-eta(t)
ight)eta^{
ho}(t)\,dt+I_{
ho+1}\ &=\int_{-\delta}^{\delta}\left(1-eta(t)
ight)eta^{
ho}(t)\,dt+R_{
ho}(\delta)-R_{
ho+1}(\delta)+I_{
ho+1}\ &<\left(\epsilon/2
ight)I_{
ho}+R_{
ho}(\delta)+I_{
ho+1}\,. \end{aligned}$$

By Lemma 3 this means that for all sufficiently large ρ

$$0\leqslant 1-\frac{I_{\rho+1}}{I_{\rho}}<\epsilon.$$

Since $\epsilon > 0$ is arbitrary, (14) follows.

LEMMA 5. If $\delta > 0$ and $\eta > 0$, then

$$\lim_{\rho\to\infty}\frac{A_{\nu\rho}(\delta)}{A_{\nu\rho}(\eta)}=1.$$

Proof. It can be given similarly to that of Lemma 1.

A lemma of a different character, which is useful in the next sections is the following one.

LEMMA 6. If $\delta > 0$, $\lambda \ge 0$, $\sigma > 0$, $\alpha > 0$, then

$$\lim_{\rho\to\infty}\rho^{(\lambda+1)/\alpha}\int_0^\delta t^\lambda e^{-\rho\sigma t^\alpha}\,dt=\alpha^{-1}\sigma^{-(\lambda+1)/\alpha}\Gamma((\lambda+1)/\alpha).$$
(15)

Proof. (15) readily follows by substituting $\rho \sigma t^{\alpha} = u$ in the integral.

3. The Approximation Theorem

In this section we prove the following theorem:

THEOREM 1. If $\beta(t) \in B$, $f(t) \in M$ and f(t) is continuous at a point t = x, then

$$\lim_{\rho\to\infty} U_{\rho}(f;x) = f(x).$$

Proof. Since f(t) is continuous at t = x, there exists to every $\epsilon > 0$ a $\delta > 0$ such that for all t with $|t| \leq \delta$

$$|f(x-t)-f(x)|<\epsilon/2.$$

Because of property 3. there exists a constant M > 0, such that for all t with $|t| \ge \delta$

$$|f(x-t) - f(x)| < M(1-\beta(t)).$$

Consequently, for all t

$$||f(x-t)-f(x)|<(\epsilon/2)+M(1-\beta(t)).$$

Applying the operator U_{ρ} it follows from its linearity and positivity that

$$|U_{\rho}(f;x)-f(x)|<(\epsilon/2)+M\left(1-\frac{I_{\rho+1}}{I_{\rho}}\right).$$

30

By Lemma 4 this means that for all sufficiently large ρ

$$|U_{\rho}(f; x) - f(x)| < \epsilon$$

which proves the theorem.

4. The Speed of Approximation

In determining an asymptotic expression for the speed with which the image $U_{\rho}(f; x)$ tends to f(x) if $\rho \to \infty$, at a point t = x of continuity of f(t), we assume that f''(x) exists.

Because of the existence of f''(x) we can write

$$f(x-t) - f(x) = -tf'(x) + \frac{1}{2}t^2 f''(x) + t^2 \gamma_x(t),$$
 (16)

where $\gamma_x(t)$ is bounded on **R** and with the definition $\gamma_x(0) = 0$, $\gamma_x(t)$ is continuous at t = 0. Consequently, to each $\eta > 0$ there exists a $\delta > 0$, such that for all t with $|t| \leq \delta$ the inequality

$$|\gamma_x(t)| < \eta \tag{17}$$

holds. Then, with the notation (4),

$$U_{\rho}(f; x) - f(x) = \frac{1}{I_{\rho}} \int_{-\infty}^{\infty} \{f(x - t) - f(x)\} \beta^{\rho}(t) dt$$

$$= \frac{1}{I_{\rho}} \Big[\int_{-\delta}^{\delta} \{-tf'(x) + \frac{1}{2}t^{2}f''(x) + t^{2}\gamma_{x}(t)\} \beta^{\rho}(t) dt$$

$$+ \int_{|t| \ge \delta} \{f(x - t) - f(x)\} \beta^{\rho}(t) dt \Big]$$

$$= -f'(x) \frac{I_{1\rho}(\delta)}{I_{\rho}} + \frac{1}{2}f''(x) \frac{I_{2\rho}(\delta)}{I_{\rho}} + \frac{J_{\rho}(\delta)}{I_{\rho}} + \frac{K_{\rho}(\delta)}{I_{\rho}}, \quad (18)$$

where

$$J_{\rho}(\delta) = \int_{-\delta}^{\delta} t^2 \gamma_x(t) \,\beta^{\rho}(t) \,dt \tag{19}$$

and

$$K_{\rho}(\delta) = \int_{|t| \ge \delta} \{f(x-t) - f(x)\} \beta^{\rho}(t) dt.$$
⁽²⁰⁾

In what follows the asymptotic behaviour for $\rho \to \infty$ of $I_{1\rho}(\delta)/I_{\rho}$, $I_{2\rho}(\delta)/I_{\rho}$, $J_{\rho}(\delta)/I_{\rho}$ and $K_{\rho}(\delta)/I_{\rho}$ respectively, will be determined. The results, giving the asymptotic behaviour of (18) for $\rho \to \infty$, will be given in Theorems 2–8.

P. C. SIKKEMA

In addition to properties 1.-4. it is now assumed that $\beta(t)$ possesses the following property 5. which makes the behaviour of $\beta(t)$ for $t \to 0$ more precise and which allows this behaviour to be different if t tends from the positive or from the negative side to t = 0:

5.
$$\beta(t) = 1 - ct^{\alpha} + \phi(t) \text{ it } t \downarrow 0, \text{ with } \alpha > 0, c > 0, \phi(t) = o(t^{\alpha});$$

$$\beta(t) = 1 - c' \mid t \mid^{\alpha'} + \psi(t) \text{ it } t \uparrow 0, \text{ with } \alpha' > 0, c > 0, \psi(t) = o(\mid t \mid^{\alpha'}).$$
(21)

Obviously, it will be necessary to investigate the three cases $\alpha > \alpha'$, $\alpha < \alpha'$ and $\alpha = \alpha'$ separately, while in the latter case distinction has to be made between $c \neq c'$ and c = c'. In the following parts of Section 4 the cases $\alpha > \alpha'$, $\alpha < \alpha'$ and $\alpha = \alpha'$ with $c \neq c'$ will be treated. Sub-section 4.2 is devoted to a common treatment of these three cases as far as possible; in Sub-section 4.3 theorems will be derived from the results of Sub-section 4.2 for each of the cases $\alpha > \alpha'$, $\alpha < \alpha'$ and $\alpha = \alpha'$ with $c \neq c'$, separately. The case $\alpha = \alpha'$, c = c' is investigated in Sub-section 4.4.

4.2. Asymptotic Behaviour of (18)

Although in studying the asymptotic behaviour of $I_{\nu\rho}(\delta)$ ($\delta > 0$) if $\rho \to \infty$, only the cases $\nu = 0$, 1 and 2 are of direct interest, it will be assumed, that ν is a non-negative integer. Then

$$I_{\nu\rho}(\delta) = \int_{-\delta}^{\delta} t^{\nu} \beta^{\rho}(t) \, dt = \int_{0}^{\delta} t^{\nu} \beta^{\rho}(t) \, dt + (-1)^{\nu} \int_{0}^{\delta} t^{\nu} \beta^{\rho}(-t) \, dt, \quad (\rho \ge 1).$$
(22)

Because of property 2. there exists a constant δ_0 with $0 < \delta_0 \leq \delta$ such that on the interval $0 \leq t \leq \delta_0$ both $\beta(t) > 0$ and $\beta(-t) > 0$. Then, by (22) with δ replaced by δ_0 ,

$$I_{\nu\rho}(\delta_0) = \int_0^{\delta_0} t^{\nu} e^{\rho \log \beta(t)} dt + (-1)^{\nu} \int_0^{\delta_0} t^{\nu} e^{\rho \log \beta(-t)} dt$$

= $A_{\nu\rho}(\delta_0) + (-1)^{\nu} B_{\nu\rho}(\delta_0).$ (23)

Again, on account of property 5. there exists to each ϵ with

$$0 < \epsilon < \min(c, c')$$

 $a \delta_{\epsilon}$ with $0 < \delta_{\epsilon} \leq \delta_0$ such that for all t satisfying $0 \leq t \leq \delta_{\epsilon}$ both relations

$$-(c+\epsilon) t^{lpha} \leq \log eta(t) \leq -(c-\epsilon) t^{lpha}, \ -(c'+\epsilon) t^{lpha} \leq \log eta(-t) \leq -(c'-\epsilon) t^{lpha}$$

hold. Consequently, $A_{\nu\rho}(\delta_{\epsilon})$ satisfies the inequalities

$$\int_0^{\delta_{\epsilon}} t^{\nu} e^{-\rho(c+\epsilon)t^{\alpha}} dt \leqslant A_{\nu\rho}(\delta_{\epsilon}) \leqslant \int_0^{\delta_{\epsilon}} t^{\nu} e^{-\rho(c-\epsilon)t^{\alpha}} dt$$

Applying Lemma 6 it follows with the notation

$$\alpha^{-1}(\nu+1) = a \tag{24}$$

that

$$\alpha^{-1}(c+\epsilon)^{-a} \Gamma(a) \leqslant \liminf_{\rho \to \infty} \rho^a A_{\nu\rho}(\delta_{\epsilon}) \leqslant \limsup_{\rho \to \infty} \rho^a A_{\nu\rho}(\delta_{\epsilon}) \leqslant \alpha^{-1}(c-\epsilon)^{-a} \Gamma(a).$$
(25)

By writing

$$A_{\nu\rho}(\delta_{\epsilon_1}) = A_{\nu\rho}(\delta_{\epsilon}) - \{A_{\nu\rho}(\delta_{\epsilon}) - A_{\nu\rho}(\delta_{\epsilon_1})\} \ (0 < \delta_{\epsilon_1} < \delta_{\epsilon})$$

it is, on account of property 3., clear, that $\lim_{\rho\to\infty} \rho^a \{A_{\nu\rho}(\delta_{\epsilon}) - A_{\nu\rho}(\delta_{\epsilon_1})\} = 0$ and this means that both the lim inf and the lim sup in (25) are independent of $\delta_{\epsilon}(0 < \delta_{\epsilon} \leq \delta_0)$. If then, ϵ runs through a monotonically decreasing nullsequence and the sequence of corresponding δ_{ϵ} is chosen to be also a monotonically decreasing null-sequence, it follows that

$$\lim_{\rho \to \infty} \rho^a A_{\nu\rho}(\delta_0) = \alpha^{-1} c^{-a} \Gamma(a).$$
⁽²⁶⁾

Similarly,

$$\lim_{b \to \infty} \rho^{a'} B_{\nu \rho}(\delta_0) = (\alpha')^{-1} (c')^{-a'} \Gamma(a'),$$
(27)

where

$$(\alpha')^{-1}(\nu+1) = a'.$$
 (28)

Combining (23), (26), (27) and applying Lemma 5 to (26) and (27) the following result is arrived at

$$I_{\nu\rho}(\delta) = \alpha^{-1} c^{-a} \Gamma(a) \, \rho^{-a} + (-1)^{\nu} \, (\alpha')^{-1} \, (c')^{-a'} \, \rho^{-a'} + o(\rho^{-a}) + o(\rho^{-a'})$$
(29)

where $\nu = 0, 1, 2, ..., and a, a'$ are given by (24), (28) respectively.

Considering $J_{\rho}(\delta)$ and $K_{\rho}(\delta)$ defined in (19) and (20), it follows from (17) that

$$|J_{\rho}(\delta)| \leqslant \eta I_{2\rho}(\delta) \tag{30}$$

and since $f \in M$ there exists a constant P > 0, such that for all t on $R |f(t)| \leq \frac{1}{2}P$ and hence, by (4) and (11)

$$|K_{\rho}(\delta)| \leq PR_{\rho}(\delta) \leq P ||\beta||(1-\tau)^{\rho-1} \qquad (0 < \tau < 1). \tag{31}$$

P. C. SIKKEMA

4.3. Asymptotic Behaviour of (18) if not $\alpha = \alpha', c = c'$

THEOREM 2. If $\beta(t) \in B$ and $\beta(t)$ possesses property 5. with $\alpha > \alpha'$, if $f(t) \in M$ and if f''(x) exists at a point t = x, then

$$\rho^{1/\alpha}\{U_{\rho}(f;x)-f(x)\}=-c^{-1/\alpha}\Gamma(2/\alpha)\{\Gamma(1/\alpha)\}^{-1}f'(x)+o(1) \quad (\rho\to\infty).$$
(32)

Proof. As $\alpha > \alpha'$, it follows from (24) and (28) that a < a'. This means that for $\nu = 0, 1, ..., (29)$ becomes

$$I_{\nu\rho}(\delta) = \alpha^{-1} c^{-a} \Gamma(a) \rho^{-a} + o(\rho^{-a}) \qquad (\rho \to \infty).$$
(33)

Hence, using (5), (24) and (13),

$$\frac{I_{1\rho}(\delta)}{I_{\rho}} = c^{-1/\alpha} \Gamma(2/\alpha) \{ \Gamma(1/\alpha) \}^{-1} \rho^{-1/\alpha} + o(\rho^{-1/\alpha}) \ (\rho \to \infty), \qquad (34)$$

$$\frac{I_{2\rho}(\delta)}{I_{\rho}} = c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} \rho^{-2/\alpha} + o(\rho^{-2/\alpha}) \ (\rho \to \infty), \tag{35}$$

and, on account of (30), (35), (31), (33) with $\nu = 0$,

$$\frac{J_{\rho}(\delta)}{I_{\rho}} = \mathcal{O}(\rho^{-2/\alpha}), \frac{K_{\rho}(\delta)}{I_{\rho}} = \mathcal{O}(\rho^{1/\alpha})(1-\tau)^{\rho-1}) \ (\rho \to \infty). \tag{36}$$

Substituting (34), (35) and (36) in (18), (32) follows.

In case $\alpha' > \alpha$ the following theorem holds:

THEOREM 3. If $\beta(t) \in B$ and $\beta(t)$ possesses property 5. with $\alpha' > \alpha$, if $f(t) \in M$ and if f''(x) exists at a point t = x, then

$$\rho^{1/\alpha}\{U_{\rho}(f;x)-f(x)\}=c^{-1/\alpha'}\Gamma(2/\alpha')\{\Gamma(1/\alpha')\}^{-1}f'(x)+o(1) \quad (\rho\to\infty).$$
(37)

Proof. As $\alpha' > \alpha$, it follows from (24) and (28) that a' < a and hence (29) becomes

$$I_{\nu\rho}(\delta) = (-1)^{\nu}(\alpha')^{-1}(c')^{-a'} \Gamma(a') \rho^{-a'} + o(\rho^{-a'}) \qquad (\rho \to \infty).$$

Then the proof of (37) can be continued in an analogous way as that of (32) from (33) onwards.

In case $\alpha = \alpha', c \neq c'$ we have

THEOREM 4. If $\beta(t) \in B$ and $\beta(t)$ possesses property 5. with $\alpha = \alpha'$, $c \neq c'$, if $f(t) \in M$ and if f''(x) exists at a point t = x, then

$$\rho^{1/\alpha} \{ U_{\rho}(f; x) - f(x) \} = \Gamma(2/\alpha) \{ \Gamma(1/\alpha) \}^{-1} (cc')^{-1/\alpha} \{ c^{1/\alpha} - (c')^{1/\alpha} \} f'(x) + o(1) \quad (\rho \to \infty).$$
(38)

Proof. From (24) and (28) it follows that a = a'. Therefore (29) becomes for $\nu = 0, 1, ...,$

$$I_{\nu\rho}(\delta) = \alpha^{-1} \Gamma(a) \{ c^{-a} + (-1)^{\nu} (c')^{-a} \} \rho^{-a} + o(\rho^{-a}) \qquad (\rho \to \infty)$$
(39)

and the proof of (38) can be continued in an analogous way as that of (32) from (33) onwards.

4.4. Asymptotic Behaviour of (18) if $\alpha = \alpha', c = c'$

THEOREM 5. If $\beta(t) \in B$ and $\beta(t)$ possesses property 5. with $\alpha = \alpha', c = c'$, if $f(t) \in M$ and if f''(x) exists at a point t = x, then

$$\rho^{1/\alpha} \{ U_{\rho}(f; x) - f(x) \} = o(1) \qquad (\rho \to \infty).$$
(40)

Proof. From (24) and (28) it follows that a = a' and because c = c', (29) gives for v odd

$$I_{\nu\rho}(\delta) = \rho(\rho^{-a}) \qquad (\rho \to \infty) \tag{41}$$

and the proof of (40) can be continued in an analogous way as that of (32) from (33) onwards.

It should be noticed that a special case of that with which Theorem 5 deals is that case where in property 5. not only $\alpha = \alpha'$, c = c', but also $\phi(t) = \psi(-t)$ on an interval $0 \le t < \xi$. Then $\beta(t)$ is an even function on $|t| \le \theta$, where $\theta = \min(\xi, \delta)$. By (22) $I_{1\rho}(\theta) = 0$, while (35), (30), (36) still hold. Using these results, (18) gives

$$|
ho^{2/lpha} \{ U_{
ho}(f;x) - f(x) \} - 2^{-1}Qf''(x) | < \eta Q + o(1) \qquad (
ho o \infty),$$

where η is used in (17) and

$$Q = c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1}.$$

This leads to

THEOREM 6. If $\beta(t) \in B$ and $\beta(t)$ is even in a neighborhood of t = 0, if $f(t) \in M$ and if f''(x) exists at a point t = x, then

$$\rho^{2/\alpha} \{ U_{\rho}(f; x) - f(x) \} = 2^{-1} c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} f''(x) + o(1) \qquad (\rho \to \infty).$$
(42)

Remark. In many examples of known operators of convolution type $\beta(t)$ is even on the whole of the real axis. Then Theorem 6 holds a fortiori. Viz. Section 6.

From the above it is clear that if a more precise result is desired then Theorem 5 gives, it will be necessary that in Property 5 more is known about $\phi(t)$ and $\psi(t)$ in a neighborhood of t = 0. Theorem 6 is already an example of this.

In what follows an investigation of $I_{\nu\rho}(\delta)$, as defined in (22), will be given under the condition that $\beta(t)$ possesses Property 5 with $\alpha = \alpha'$, c = c', $\phi(t) \neq \psi(-t)$ on an interval $0 < t < \delta$ ($\delta > 0$). Of course this investigation will again lead to Theorem 5, but if more is known about the way in which $\phi(t)$ and $\psi(-t)$ tend to zero if $t \downarrow 0$, it leads to results which are more precise than Theorem 5. An important example is studied in Section 5.

Let in Property 5

$$X(t) = \psi(-t) - \phi(t) \tag{43}$$

4.

be either positive or negative for all sufficiently small values of t > 0. Thus, let Δ ($0 < \Delta \leq \delta$) be chosen so small that either

or

$$X(t) > 0$$
 (for all t with $0 < t \leq \Delta$)
 $X(t) < 0$ (for all t with $0 < t \leq \Delta$),

and, moreover,

$$1 - ct^{\alpha} + \phi(t) > \frac{1}{2}$$
 and $1 - ct^{\alpha} + \psi(-t) > \frac{1}{2}$ $(0 \le t \le \Delta)$. (44)

Let then

$$\tau = \operatorname{sgn} X(t) \qquad (0 < t \leq \Delta). \tag{45}$$

On this interval τ is constant.

In case v even, it follows from (39) with c = c', that

$$I_{\nu\rho}(\Delta) = 2\alpha^{-1}c^{-a}\Gamma(a)\,\rho^{-a} + o(\rho^{-a}), \qquad a = \alpha^{-1}(\nu+1), \tag{46}$$

from which, with $\nu = 2$ and $\nu = 0$, (5) and Lemma 3,

$$\frac{I_{2\rho}(\Delta)}{I_{\rho}} = c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} \rho^{-2/\alpha} + o(\rho^{-2/\alpha}) \ (\rho \to \infty). \tag{47}$$

Next the case ν is odd is studied. Then, $I_{\nu\rho}(\Delta)$ is written as

$$I_{\nu\rho}(\Delta) = \int_{0}^{\Delta} t^{\nu} \{ e^{\rho \log (1 - ct^{\alpha} + \phi(t))} - e^{\rho \log (1 - ct^{\alpha} + \psi(-t))} \} dt$$
$$= \int_{0}^{\Delta} t^{\nu} e^{\rho \log (1 - ct^{\alpha} + \phi(t))} \{ 1 - e^{\rho \log (1 + X(t)/(1 - ct^{\alpha} + \phi(t)))} \} dt.$$
(48)

Writing for $0 \leq t \leq \Delta$

$$\log(1 - ct^{\alpha} + \phi(t)) = -ct^{\alpha} + \xi(t), \qquad (49)$$

$$\log\left(1 + \frac{X(t)}{1 - ct^{\alpha} + \phi(t)}\right) = X(t) + \eta(t),$$
 (50)

then

$$\xi(t) = o(t^{\alpha}), \, \eta(t) = \ell(t^{\alpha}X(t)) \qquad (t \downarrow 0). \tag{51}$$

Since $\beta(t)$ is bounded on **R**, $\phi(t)$ and $\psi(-t)$ are bounded on the interval $0 \le t \le \Delta$ and by (43) X(t) too. Then it follows from (51) that there exists on this interval a bounded, monotonically increasing function $\zeta(t)$ with $\zeta(0) = 0$, and a positive constant r such that for all t of this interval

$$|\xi(t)| \leqslant t^{\alpha} \zeta(t), \tag{52}$$

$$|\eta(t)| \leqslant rt^{\alpha} |X(t)|.$$
⁽⁵³⁾

Assertion. It is possible to construct for all sufficiently large values of ρ , say $\rho \ge Q$, two positive functions $\epsilon(\rho)$ and $\delta(\rho)$, both monotonically decreasing to zero if $\rho \to \infty$, with $\epsilon(Q) < \min(c, 1)$ and $\delta(Q) < \Delta$ such that for all $\rho \ge Q$ and all t with $0 \le t \le \delta(\rho)$ both

$$-(c+\epsilon(\rho)) t^{\alpha} \leqslant -ct^{\alpha} + \xi(t) \leqslant -(c-\epsilon(\rho)) t^{\alpha}$$
(54)

and

$$-\rho(1+\tau\epsilon(\rho))X(t) \leqslant 1-e^{\rho(X(t)+\eta(t))} \leqslant -\rho(1-\tau\epsilon(\rho))X(t)$$
 (55)

hold, with τ given in (45).

Obviously, (54) is satisfied if

$$\zeta(\delta(\rho)) \leqslant \epsilon(\rho) \qquad (\rho \geqslant Q).$$
 (56)

Investigating (55) we write for $0 \le t \le \Delta$

$$1 - e^{\rho(X(t) + \eta(t))} = -\rho(X(t) + \eta(t)) + \rho X(t) y(t, \rho)$$
(57)

which transforms (55) into

$$|-\rho\eta(t)+\rho X(t)y(t,\rho)| \leq \rho\epsilon(\rho) \tau X(t) \qquad (0 \leq t \leq \delta(\rho)).$$
 (58)

Because of (53), (58) will certainly be satisfied if

$$r\delta^{\alpha}(\rho) + |y(t,\rho)| \leq \epsilon(\rho) \qquad (0 \leq t \leq \delta(\rho)).$$
 (59)

P. C. SIKKEMA

From the definition (57) of $y(t, \rho)$ it follows that

$$|y(t,\rho)| \leq \rho |X(t)|(1+rt^{\alpha})^{2} \sum_{k=0}^{\infty} \frac{\rho^{k} |X(t)|^{k} (1+rt^{\alpha})^{k}}{(k+2)!} \leq \frac{1}{2} A \rho |X(t)| e^{A \rho |X(t)|},$$
(60)

where

$$A = (1 + r\Delta^{\alpha})^2.$$

On account of Property 5. with $\alpha = \alpha'$ and (43) we can write

$$X(t) = t^{\alpha} \omega(t) \qquad (0 \leqslant t \leqslant \Delta) \tag{61}$$

with $\omega(0) = 0$, $\omega(t) \to 0$ if $t \downarrow 0$, which means, that because of the boundedness of X(t) on $0 \le t \le \Delta$, there exists a function $\Omega(t)$, $\Omega(0) = 0$ and monotonically increasing, such that

$$|\omega(t)| \leq \Omega(t) \qquad (0 \leq t \leq \Delta). \tag{62}$$

Then it follows from (60), (61) and (62), that

$$|y(t,\rho)| \leq \frac{1}{2}B(\rho) e^{B(\rho)} \qquad (\rho \geq Q)$$
(63)

where

$$B(\rho) = A\rho\delta^{\alpha}(\rho)\Omega(\delta(\rho)). \tag{64}$$

From (59), (60) and (63) it appears that (55) is certainly satisfied if

$$r\delta^{\alpha}(
ho) + \frac{1}{2}B(
ho) e^{B(
ho)} \leqslant \epsilon(
ho) \qquad (
ho \geqslant Q).$$
 (65)

In considering (56) and (65) $\delta(\rho)$ can be chosen in such a way that the relations

$$\rho \delta^{\alpha}(\rho) \to \infty \qquad (\rho \to \infty)$$
 (66)

and

$$\rho \delta^{\alpha}(\rho) \Omega(\delta(\rho)) \to 0 \qquad (\rho \to \infty) \tag{67}$$

hold simultaneously. In fact, since $\Omega(u)$ is monotonically increasing on the interval $0 \le t \le \Delta$, and $\Omega(0) = 0$, the equation

$$\rho u^{\alpha} = \frac{1}{(\Omega(u))^{1/2}} \tag{68}$$

possesses for all sufficiently large ρ , say $\rho \ge \rho_1 \ge 1$, precisely one positive root $u = u(\rho)$ which is smaller than Δ . This root $u(\rho)$ is monotonically decreasing to zero if $\rho \rightarrow \infty$. We define

$$\delta(\rho) = u(\rho) \qquad (\rho \geqslant \rho_1) \tag{69}$$

and with this definition we put for all $\rho \ge \rho_2 \ge \rho_1$

$$\epsilon(\rho) = \max\{\zeta(\delta(\rho)), \, \delta^{\alpha}(\rho) + \frac{1}{2}B(\rho) \, e^{B(\rho)}\}, \tag{70}$$

 $B(\rho)$ being defined in (64), where ρ_2 is chosen so large that for $\rho \ge \rho_2$ both quantities between the curled brackets are smaller than min(c, 1) and moreover, $B(\rho)$ is monotonically decreasing (to zero) for $\rho \ge \rho_2$. Then we define $Q = \rho_2$. With these definitions of $\delta(\rho)$, $\epsilon(\rho)$ and Q the assertion is proved and that means that for ν odd and $\rho \ge Q$ (54) and (55) are satisfied. Consequently, by (49), (50), (54), (55) and (48), $I_{\nu\rho}(\Delta)$ fulfils the following fundamental inequalities:

$$-\rho(1+\tau\epsilon(\rho))\int_{0}^{\delta(\rho)}t^{\nu}e^{-\rho(c+\epsilon(\rho))t^{\alpha}}X(t)\,dt \leqslant I_{\nu\rho}(\delta(\rho))$$
$$\leqslant -\rho(1-\tau\epsilon(\rho))\int_{0}^{\delta(\rho)}t^{\nu}e^{-\rho(c-\epsilon(\rho))t^{\alpha}}X(t)\,dt,\,(\nu\text{ odd},\,\rho\geqslant Q). \tag{71}$$

Without knowing more about the behaviour of X(t), i.e. of $\omega(t)$, if $t \downarrow 0$, it is impossible to derive from (71) much about the asymptotic behaviour of $I_{\nu\rho}(\delta(\rho))$ if $\rho \to \infty$. However, it is easy to show that

$$I_{\nu\rho}(\delta(\rho)) = \rho(\rho^{-a}) \qquad (\rho \to \infty) \tag{72}$$

with a given by (24). In fact, multiplying all three members of (71) with ρ^a and using (61), (62), it follows that

$$\rho^a \mid I_{\nu\rho}(\delta(\rho)) \mid \leqslant \rho^{a+1}(1 + \epsilon(\rho)) \{\delta(\rho)\}^{\nu+\alpha} \Omega(\delta(\rho)) \int_0^{\delta(\rho)} e^{-\rho(c-\epsilon(\rho))t^{\alpha}} dt.$$

Applying Lemma 6, this leads to

$$|
ho^a \mid I_{_{
u
ho}}(\delta(
ho))| \leqslant CB(
ho) \, \delta^{_
u}(
ho)$$

where $B(\rho)$ is given in (64) and C is a properly chosen positive constant. Because of (64), (67) and the fact that $\delta(\rho)$ tends to zero if $\rho \to \infty$, (72) is true.

As a first corollary we show that from this result Theorem 5 can be proved again.

In fact, if ν is odd and $\rho \ge Q$, $I_{\nu\rho}(\delta)$ as given in (22) is written as

$$I_{\nu\rho}(\delta) = I_{\nu\rho}(\delta(\rho)) + \int_{\delta(\rho) \leq |t| \leq \delta} t^{\nu} \beta^{\rho}(t) dt.$$
(73)

Because of Property 5. with $\alpha = \alpha'$, c = c', it is possible to choose $\delta_1 > 0$

and so small, that for all t with $|t| \leq \delta_1$, $\beta(t) > e^{-\frac{1}{2} \text{ct}^{\alpha}}$. Then $\delta(\rho) \leq \delta_1$ for sufficiently large ρ , say $\rho \geq \rho_3 \geq Q$ and

$$\begin{split} \rho^a \left| \int_{\delta(\rho) \leq |t| \leq \delta_1} t^{\nu} \beta^{\rho}(t) \, dt \right| &\leq 2\rho^a \int_{\delta(\rho)}^{\delta_1} t^{\nu} e^{-\frac{1}{2}\rho c t^{\alpha}} \, dt \\ &= 2\alpha^{-1} (2/c)^a \int_{2^{-1} c \rho \delta^{\alpha}(\rho)}^{2^{-1} c \rho \delta^{\alpha}_1} u^{a-1} e^{-u} \, du. \end{split}$$

By (66) the latter integral tends to zero as $\rho \to \infty$.

Hence it follows from (73) and (72) that for odd values of ν

$$\lim_{\rho\to\infty}\rho^a I_{\nu\rho}(\delta_1) = \lim_{\rho\to\infty}\rho^a I_{\nu\rho}(\delta(\rho)) = 0.$$

Then, (41) holds and this again proves Theorem 5.

A second corollary to (71) will be treated in the next section.

5. Example to Property 5. of $\beta(t)$

In this section $\phi(t)$ and $\psi(t)$ in Property 5. of $\beta(t)$ are chosen in a special way. Because of (43) this means that in the fundamental relation (71) of X(t) more is known and that will lead to a formula for the asymptotic behaviour of $I_{vo}(\delta(\rho))$.

It is assumed that Property 5. takes the following form, indicated by 5':

5'
$$\beta(t) = 1 - ct^{\alpha} + dt^{\mu} + \sigma(t) \text{ if } t \downarrow 0,$$

with $\mu > \alpha > 0, c > 0, d \neq 0, \sigma(t) = o(t^{\mu}),$
$$\beta(t) = 1 - c \mid t \mid^{\alpha} + d' \mid t \mid^{\mu'} + \tau(t) \text{ if } t \uparrow 0,$$

with $\mu' > \alpha > 0, d' \neq 0, \tau(t) = o(\mid t \mid^{\mu'}).$

In the investigation it will be supposed that $\mu < \mu'$ because its conclusions appear to hold with only minor changes if $\mu' < \mu$ or $\mu = \mu'$.

Then in (43),

$$X(t) = -dt^{\mu} + d't^{\mu'} - \sigma(t) + \tau(-t) = t^{\alpha}\omega(t),$$
 (74)

where, in accordance with (61),

$$\omega(t) = -dt^{\mu-\alpha} + a(t), \qquad (75)$$

with

$$a(t) = o(t^{\mu-\alpha})$$
 $(t \downarrow 0).$ (76)

In (62) we may choose

$$\Omega(t) = Dt^{\mu-\alpha} \qquad (0 \leqslant t \leqslant \Delta)$$

where $\Delta > 0$ is so small that on the interval $0 < t \leq \Delta X(t) \neq 0$ and X(t) has a fixed sign; D > 0 is properly chosen. On $0 < t \leq \Delta$ is

$$\tau = sgn(-d) \tag{77}$$

because of (45). (66) and (67) take the form

$$\rho \delta^{\alpha}(\rho) \to \infty$$
 and $\rho \delta^{\mu}(\rho) \to 0$ $(\rho \to \infty)$

respectively, from which it follows that in the special case, considered in this section, we may take

$$\delta(
ho)=
ho^{-\gamma}\left(rac{1}{\mu}<\gamma<rac{1}{lpha}
ight).$$

Because of the results of Sub-section 4.4, with this choice of $\delta(\rho)$ it is possible to construct for all sufficiently large ρ ($\rho \ge Q$) a positive function $\epsilon(\rho)$ with $\epsilon(Q) < \min(c, 1)$ and monotonically decreasing to zero if $\rho \to \infty$, such that for all $\rho \ge Q$ the fundamental inequalities (71) hold, i.e.

$$-\rho(1+\tau\epsilon(\rho))\int_0^{\rho^{-\nu}}t^{\nu}e^{-\rho(c+\epsilon(\rho))t^{\alpha}}X(t)\,dt\leqslant I_{\nu\rho}(\rho^{-\nu})$$
$$\leqslant -\rho(1-\tau\epsilon(\rho))\int_0^{\rho^{-\nu}}t^{\nu}e^{-\rho(c-\epsilon(\rho))t^{\alpha}}X(t)\,dt,$$

from which, with X(t) written in the form

$$X(t) = t^{\mu}(-d + b(t)),$$
 and $b(t) = t^{\alpha}a(t) = o(1)$ if $t \downarrow 0$, (78)

(because of (74), (75), (76)), it follows that

$$-\rho(1+\tau\epsilon(\rho))\int_{0}^{\rho^{-\gamma}}t^{\mu+\nu}e^{-\rho(c+\epsilon(\rho))t^{\alpha}}(-d+b(t))\,dt \leqslant I_{\nu\rho}(\rho^{-\gamma})$$

$$\leqslant -\rho(1-\tau\epsilon(\rho))\int_{0}^{\rho^{-\gamma}}t^{\mu+\nu}e^{-\rho(c-\epsilon(\rho))t^{\alpha}}(-d+b(t))\,dt.$$
(79)

Applying Lemma 6,

$$\int_0^{\rho^{-\gamma}} t^{\mu+\nu} e^{-\rho(c+j\epsilon(\rho))t^{\alpha}} dt = \frac{1}{\alpha\{\rho(c+j\epsilon(\rho))\}^g} \{\Gamma(g) - W_i(\rho)\}, \quad (80)$$

where $i = 0, 1; j = (-1)^i, g = (\mu + \nu + 1)/\alpha$ and

$$W_i(\rho) = \int_{(c+j\epsilon(\rho))\rho^{1-\alpha\gamma}}^{\infty} u^{g-1} e^{-u} \, du. \tag{81}$$

Further, with respect to b(t), defined in (78) and combined with (76) it is clear that to each ϵ_b with $0 < \epsilon_b \leq \frac{1}{2}$ there exists a $Q_b \geq Q$ such that for all $\rho \geq Q_b$

$$|b(t)| \leqslant -\tau \, d\epsilon_b \qquad (0 \leqslant t \leqslant \rho^{-\nu}). \tag{82}$$

Combining (79), (80) and (82) the following inequalities are obtained

$$\frac{(1+\tau\epsilon(\rho))(1+\tau\epsilon_b) d}{\alpha(c+\epsilon(\rho))^g} \{\Gamma(g)-W_0(\rho)\} \leqslant \rho^{g-1}I_{\nu\rho}(\rho^{-\nu}) \qquad (83)$$
$$\leqslant \frac{(1-\tau\epsilon(\rho))(1-\tau\epsilon_b) d}{\alpha(c-\epsilon(\rho))^g} \{\Gamma(g)-W_1(\rho)\}.$$

Because of the fact that $1 - \alpha \gamma > 0$, it follows from (81) that if $\rho \to \infty$

$$\rho^{g-1}W_i(\rho) \to 0 \quad (i = 0, 1),$$

and, using an argument as in Sub-section 4.2 (83) results in

$$\lim_{\rho\to\infty}\rho^{g-1}I_{\nu\rho}(\rho^{-\nu})=d\alpha^{-1}c^{-g}\Gamma(g)\,(\nu\text{ odd}).$$

From this result it follows by reasoning as in the first corollary in Subsection 4.4 that

$$I_{\nu\rho}(\delta) = d\alpha^{-1}c^{-g}\Gamma(g)\,\rho^{1-g} + o(\rho^{1-g}) \qquad (\nu \text{ odd}, \,\rho \to \infty).$$

Taking $\nu = 1$ and using (46) with $\nu = 0$, combined with (5) and Lemma 3, this results in

$$\frac{I_{1o}(\delta)}{I_{o}} = d2^{-1}c^{-(\mu+1)/\alpha}\Gamma((\mu+2)/\alpha)\{\Gamma(1/\alpha)\}^{-1}\rho^{-(\mu+1-\alpha)/\alpha} + o(\rho^{-(\mu+1-\alpha)/\alpha}).$$
 (84)

Consequently, by (18), (84) and (47) together with Lemma 1, the following formula holds for $\rho \rightarrow \infty$:

$$\begin{split} U_{\rho}(f;x) - f(x) &= -d2^{-1}c^{-(\mu+1)/\alpha} \Gamma((\mu+2)/\alpha) \{ \Gamma(1/\alpha) \}^{-1} f'(x) \, \rho^{-(\mu+1-\alpha)/\alpha} \\ &+ 2^{-1}c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} f''(x) \, \rho^{-2/\alpha} \\ &+ o(\rho^{-(\mu+1-\alpha)/\alpha}) + o(\rho^{-2/\alpha}). \end{split}$$

This result leads to

THEOREM 7. If $\beta(t) \in B$ and $\beta(t)$ possesses Property 5'. with $\mu < \mu'$ and $d \neq 0$, if $f(t) \in M$ and f''(x) exists at a point t = x, then

$$\rho^{\sigma/\alpha}\{U_{\rho}(f; x) - f(x)\} = p(x) + o(1) \qquad (\rho \to \infty),$$

where

$$\sigma = \min(\mu + 1 - \alpha, 2)$$

and

(i) if
$$0 < \mu - \alpha < 1$$
, then $\sigma = \mu + 1 - \alpha$ and

$$p(x) = -d2^{-1}c^{-(\mu+1)/\alpha}\Gamma((\mu+2)/\alpha)\{\Gamma(1/\alpha)\}^{-1}f'(x),$$

(ii) if
$$\mu - \alpha = 1$$
, then $\sigma = 2$ and

$$p(x) = 2^{-1} c^{-2/\alpha} \Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} \{ -3d(\alpha c)^{-1} f'(x) + f''(x) \}$$

(iii) if $\mu - \alpha > 1$, then $\sigma = 2$ and

$$p(x) = 2^{-1}c^{-2/\alpha}\Gamma(3/\alpha)\{\Gamma(1/\alpha)\}^{-1}f''(x)$$

ADDENDUM. If on the contrary $\mu' < \mu$ and $d' \neq 0$, then in the assertions of theorem 7, μ is to be replaced by μ' and in (i), (ii), (iii) d by -d'. If $\mu = \mu'$, and $d \neq d'$, in (i), (ii) d is to be replaced by d - d'.

6. Applications

In this section we consider a special case of Theorem 7, which was proved in a study [7], preceding the present paper.

THEOREM 8. If $\beta(t) \in B$ and $\beta'''(0)$ exists, while $\beta''(0) \neq 0$, if $f \in M$ and f''(x) exists at a point t = x, then

$$\rho\{U_{\rho}(f;x) - f(x)\} = \frac{-1}{2\beta''(0)} \left\{ \frac{\beta'''(0)}{\beta''(0)} f'(x) + f''(x) \right\} + o(1) \ (\rho \to \infty).$$
(85)

Proof. As $\beta'''(0)$ exists, $\beta(t)$ can be written as

$$\beta(t) = \beta(0) + t\beta'(0) + \frac{1}{2}t^2\beta''(0) + \frac{1}{6}t^3\beta'''(0) + t^3\kappa(t),$$

in which, because of the fact that $\beta \in B$, $\beta(0) = 1$, $\beta'(0) = 0$, $\beta''(0) < 0$, Hence, $\beta(t)$ possesses property 5'. if $\beta'''(0) \neq 0$, with $\alpha = 2$, $\mu = \mu' = 3$, $c = -\frac{1}{2}\beta''(0)$, $d = \frac{1}{6}\beta'''(0)$, $d' = -\frac{1}{6}\beta'''(0)$, $t^3\kappa(t) = o(t^3)$ if $t \to 0$. Thus, if $\beta'''(0) \neq 0$, Theorem 7, together with its addendum results in $\sigma = 2$ and (ii) then gives (85). Of the well-known operators several are of the type considered in Theorem 8. As examples we mention here

1.
$$\beta(t) = e^{-t^2}, I_{\rho} = (\pi/\rho)^{1/2} (\rho \ge 1)$$
 (Weierstrass [10]).

(85) takes the form

$$\rho\left\{(\rho/\pi)^{1/2}\int_{-\infty}^{\infty}f(x-t)\,e^{-\rho t^2}\,dt-f(x)\right\}=\frac{1}{4}f''(x)+o(1)\,(\rho\to\infty).$$

2. $\beta(t) = 1 - t^2(|t| \le 1), \beta(t) \equiv 0 (|t| > 1)$ (Landau [5]).

Then, if $\rho \ge 1$,

$$I_{\rho} = B(1/2, \rho + 1) = (\pi/\rho)^{1/2}(1 + o(1)) \qquad (\rho \to \infty).$$

Theorem 8 gives

$$\rho \left\{ (\rho/\pi)^{1/2} \int_{-1}^{1} f(x-t)(1-t^2)^{\rho} dt - f(x) \right\} = \frac{1}{4} f''(x) + o(1) \ (\rho \to \infty).$$

3. $\beta(t) = \cos^2(\pi/2)t(|t| \le 1), \ \beta(t) \equiv 0 \ (|t| > 1).$

Then, if $\rho \ge 1$, $I_{\rho} = (8/(\pi \rho))^{-1/2}$.

The corresponding operators are the slightly modified de la Vallée-Poussin operators [9]. Theorem 8 gives

$$\rho\left\{(\pi\rho/8)^{1/2}\int_{-1}^{1}f(x-t)(\cos(\pi/2)\ t)^{2\rho}\ dt-f(x)\right\}=(4/\pi^2)\ f''(x)+o(1)\ (\rho\to\infty).$$

It is to be noticed that in all three above examples $\beta(t)$ is an even function. An example where this is not so is the following one:

4. $\beta(t) = e^{-t^2+t^3} (\mid t \mid \leq \frac{1}{2}), \beta(t) \in B.$

Then, if $\rho \ge 1$, $I_{\rho} = (\pi/\rho)^{1/2}(1 + o(1))$. Theorem 8 is applicable with $\alpha = 2$, $\mu = \mu' = 3$, $\beta''(0) = -2$, $\beta'''(0) = 6$ and it gives

$$\rho\left\{(\rho/\pi)^{1/2}\int_{-\infty}^{\infty}f(x-t)\,\beta^{\rho}(t)\,dt-f(x)\right\}=-\tfrac{3}{4}f'(x)+f''(x)+o(1)\,(\rho\to\infty).$$

A first example where Theorem 8 is not applicable is a generalisation of the above Example 2:

5.
$$\beta(t) = 1 - |t|^{\alpha} (\alpha > 0, |t| \leq 1), \beta(t) \equiv 0 (|t| > 1).$$

Then, if $\rho \ge 1$,

$$I_{
ho}=2lpha^{-1}B(lpha^{-1},\,
ho+1)=2lpha^{-1}\varGamma(1/lpha)\,
ho^{-1/lpha}(1+o(1))\qquad(
ho o\infty),$$

B(x, y) denoting Euler's beta function. According to Theorem 7 with c = 1, we have

$$\rho^{2/\alpha} \left\{ \rho^{1/\alpha} \{ 2\Gamma((1/\alpha) + 1) \}^{-1} \int_{-1}^{1} f(x - t)(1 - |t|^{\alpha})^{\rho} dt - f(x) \right\}$$

= $2^{-1}\Gamma(3/\alpha) \{ \Gamma(1/\alpha) \}^{-1} f''(x) + o(1) \ (\rho \to \infty).$

The case $\alpha = 2k$ ($k \in \mathbb{N}$, $k \ge 2$) is due to Mamedov [6]. A second one is the following one:

6.
$$\beta(t) = e^{-t^4 + t^5} (|t| \leq \frac{1}{2}), \beta(t) \in B$$

Then, if $\rho \ge 1$,

$$I_{\rho} = 2^{-1} \rho^{-1/4} \Gamma(1/4) (1 + o(1)) \qquad (\rho \to \infty).$$

Application of Theorem 7, together with its addendum, gives

$$\begin{split} \rho^{1/2} \left\{ & 2\rho^{1/4} \{ \Gamma(\frac{1}{4}) \}^{-1} \int_{-\infty}^{\infty} f(x-t) \, \beta^{\rho}(t) \, dt - f(x) \right\} \\ &= 2^{-1} \Gamma(\frac{3}{4}) \{ \Gamma(\frac{1}{4}) \}^{-1} \{ -\frac{1}{2} f'(x) + f''(x) \} + o(1) \, (\rho \to \infty). \end{split}$$

REFERENCES

- 1. S. BOCHNER, "Harmonic Analysis and the Theory of Probability," Univ. of California Press, Berkeley, 1955.
- R. BOJANIC AND O. SHISHA, On the precision of uniform approximation of continuous functions by certain linear positive operators of convolution type, J. Approximation Theory 8 (1973), 101-113.
- 3. P. L. BUTZER AND R. J. NESSEL, "Fourier Analysis and Approximation, Vol. I, One Dimensional Theory," Birkhäuser-Verlag, Basel/Stuttgart, 1971.
- 4. P. P. KOROVKIN, "Linear Operators and Approximation Theory," Hindustan Publ. Comp., Delhi, 1960.
- 5. E. LANDAU, Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion, *Rend. Cir. Mat. Palermo* 25 (1908), 337–345.
- R. G. MAMEDOV, The approximation of functions by generalized linear Landau operators (Russian), *Dokl. Akad. Nauk. SSSR* 139 (1961), 28–30; English translation in: *Soviet Math. Dokl.* 2 (1961), 861–864.
- 7. P. C. SIKKEMA AND R. K. S. RATHORE, Convolutions with powers of bell-shaped functions, Report Department of Mathematics, University of Technology, Delft, March 1976.
- 8. E. C. TITCHMARSH, "Introduction to the Theory of Fourier Integrals," Oxford University Press, London, 1937, 1948.
- 9. C. DE LA VALLÉE-POUSSIN, Note sur l'approximation par un polynôme d'une fonction dont la dérivée est à variation bornée, *Bull. Soc. Math. Belg.* 3 (1908), 403–410.
- 10. K. WEIERSTRASS, Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen einer reellen Veränderlichen, *Sitzungsber. Akad. Berlin* (1885), 633–639.